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We wish to thank the discussants for their thoughtful and
provocative comments. In our article we have presented a new
approach to modeling dietary consumption patterns, as well as
methodology permitting the application of LCA to sample sur-
vey data. We had two goals. First, extending a long-standing
interest in vegetable consumption, we were interested in using
L.CA to find some overall (if crude) measure of the proportion
of the population falling into a “regular” vegetable consump-
tion class and the proportion falling into a less regular, or
infrequent, consumption class. This type of information could
be useful in formulating public health programs. A national
dataset comprising 4 (independent) days of dietary intake data
sampled from women age 19-50 from the CSFII offered this
opportunity. Second, because these data were not from a sim-
ple random sample, we had to develop methodology to apply
sample weights to the data and to estimate standard errors that
take into account the complex sample design. In our “first cut”
at achieving these goals, we sought to fit a simple, straightfor-
ward LC model. We recognize that there are many different
and more complex approaches than our simple model, and we
encourage others to pursue them. A major contribution, both
in our eyes and in the eyes of the discussants, was to develop
LCA methods that can be used to analyze sample survey data.

The discussions cover a broad range of topics. We begin our
rejoinder by returning to our motivating problem, characteriz-
ing “usual” vegetable consumption in the United States. Cen-
tral to this problem is the need to measure intake over some
time period. We explain our approach to this problem, which
involves a new definition of usual consumption that uses LC
modeling with the consequent data reduction to binary obser-
vations. Some of the discussants questioned our data reduction
and suggested alternative methods of analysis, both frequen-
tist and Bayesian. We review and comment on some of these.
The question of how (and whether) to use sample weights was
of special interest to our discussants, as was the estimation
of standard errors. The question of model fit arose in several
of the discussions. We make the point that no adequate mea-
sure of goodness of fit for latent class models has yet been
developed for sample survey data; such measures need to be
developed. We address these three topics (weights, variance
estimation, and goodness of fit) under the broad heading of
accounting for the sample design. Finally, some of the dis-
cussants proposed new uses of our techniques, and we briefly
review these.

1. CHARACTERIZING DIETARY INTAKE

As pointed out by Carriquiry and Nusser, the U. S. govern-
ment relies on dietary intake data from national surveys for
the development of nutritional and health policies. For exam-
ple, in presenting a revised baseline for the Healthy People
2000 objectives, Krebs-Smith et al. (1995) showed that 8.2%
of the population age 20 years and older consumed less than

a single serving of a vegetable per day based on 3 days of
dietary intake data for 3 consecutive years. Because of the
inverse association between vegetable consumption and sev-
eral cancers, we were interested in using national survey data
to‘estimate the proportion of the population that does and that
does not consume vegetables on a “regular” basis, where regu-
lar can be regarded as a way of defining “usual.” The National
Cancer Institute is currently "investigating other approaches to
estimating regularity.

As Carriquiry and Nusser note, the definition of “usual”
intake as the “long-run average intake of a food” is widely
used, although there are other methods in the literature, some
of which we cite in our article. However, there is no consen-
sus on how to define “long run”. Furthermore, average intake
may not be a measure of the regularity of intake. We took a
new approach to this problem, considering “regularity” of veg-
etable consumption to be an unobservable or latent variable.
This definition is conceptual but can be operationalized via
latent class modeling. We fitted a two-class model to the data. :
In this context, the item-conditional probabilities, measures of
the probability of consuming a vegetables on each recall day
given membership in a specific class, are dietary propensity '
scores (Sue Krebs-Smith and Kevin Dodd, personal commu-
nication). These were remarkably consistent for the class of .
“regular” vegetable consumers but appeared to vary for the
infrequent consumers.

Concerns were raised about our dichotomization of the
data, which consisted of the number of grams of each indi-
vidual food consumed by each respondent. We agree that
dichotomization of the data does not necessarily reduce mea-
surement error. Carriquiry and Nusser contend that the amount '
of food consumed on most of the survey days, which is lost in
dichotomization. may be crucial in making inferences about
the impact of diet on cancer. In our method, an individual
consuming small amounts of food on most of the intake days
would be classified differently than an individual consuming
a large amount on a single recall day, yet the average intake
for both individuals could be the same. Whether frequency of
consumption of vegetables or the quantity consumed is criti-
cal in disease prevention is an open question. Kant, Schatzkin,
Graubard, and Schairer (2000) developed a recommended
foods score (RFS) that summarizes food frequency question-
naire replies for 23 items, using the report of consumption
but not the quantity consumed. They found that dietary diver-
sity as reflected in the RFS was inversely related to can-
cer and other diseases as well as to all-cause mortality. Our
method could be used to examine the relationship between
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disease and diet. In a study similar to that described here, but
with a larger sample size, respondents would be followed for
morbidity or mortality, as is being done with respondents from
the second National Heaith and Nutrition Study. A LC model
could be fitted to the data, each subject assigned to a LC, and
the eventual outcomes compared to these assignments. Our
method could be extended to look at amounts consumed.

Elliott and Sammetl suggest that a count of vegetable serv-
ings on each occasion of measurement represents a better
modeling opportunity than the simpler 0-1 representation that
we used. In general, we agree that this is both desirable and
possible, using, for example, a Poisson representation for the
counts. In the present case our judgment was that the reliabil-
ity of the measurements better supported the simpler coding,
but it would be interesting to compare these models.

2. MODEL CHOICE
2.1 Latent Class and Alternative Models

As discussed earlier, our choice of a two-class model was
based on our interest in the proportion of the population that
does and that does not consume vegetables on a regular basis.
Our data constrained us to a two-class model, as noted by Car-

© riquiry and Nusser. But this was not a problem, because the

two-class model was the model of interest to us. Carriquiry

- and Nusser suggest an approach that would distinguish day 1
- from the other recall days. In fact, a LC constrained to equate
i recalls for days 2—4 for each class would accomplish this
- objective. The similarity seen in the item-conditional probabil-
-ities for class 2 (but not class 1) suggests such a constrained
,model. especially for class 2. However, because this was a

post hoc finding, we did not pursue this particular model.
Elliott and Sammel suggest extending our method to take

‘into account all the various vegetables reported by all respon-

dents on all 4 recall days. to create the potential for eval-
uating more than two classes. The resulting cross-tabulation
would likely result in a very sparse table, with the accompa-
nying problems of numerical instability and lack of conver-
gence. An alternative method, grouping vegetables by their
characteristics (e.g., deep yellow, dark-green leafy), may be a
feasible extension of our model. Yet another approach would
be to apply definitions of servings to grams reported by each
subject, and to use mixture analysis on these variables. Mea-
surement error in reporting portion size is a problem with this
approach, as we noted in our article, and it adds a level of
difficulty to the analysis.

We agree with Carriquiry and Nusser that it would be pos-
stble to fit a richer class of models using the continuous data.
They summarize a method of obtaining the distribution of con-
sumption of foods. However, their method makes the assump-
tion that the probability of consuming a food is independent
of the amount consumed, an assumption likely to be untrue for
vegetables, and also requires strong distributional assumptions.
Similarly, the random-effects model and the hidden Markov
model suggested by Vermunt require heavy model assump-
tions. An assessment of the robustness of these methods to
model specification is recommended.

Vermunt suggests alternative analyses that take advantage
of the fact that the data were collected on six occasions. Here,
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as in many large surveys, the data cannot all be collected at
a single time point, even when the time of interest might be
as long as a season. The six data points do not represent the
same time intervals during the year, and each occasion actu-
ally represents a period of several overlapping weeks (e.g.,
observation three for one respondent may be collected in the
same month as observation four for a different respondent).
Further, the two missing time points may represent occasions
deleted randomly by the U.S. Department of Agriculture for
subjects with five or six responses or actually may be missing
data, so that the mechanism of missingness differs between
respondents and is not known to the analyst. For this rea-
son, we chose not to analyze data for all six occasions and
cannot agree with Vermunt’s interpretation that in these data,
“consumption of vegetables. . . depends on the time of year.”
Pairwise z tests using jackknifed standard errors (our Table 2)
among the four conditional probabilities within each LC result

in no absolute z value greater than 1.13, suggesting, on a post

hoc basis, that homogeneity is not an unreasonable assump-
tion for the rates of vegetable consumption.

Elliott and Sammel propose a post hoc Bayesian approach,
using Bayes’s theorem to calculate a predicted LC member-
ship for each sample member. Given these classifications, odds
ratios can be computed for outside variables such as age and
region. Because of concerns about the validity of the two-stage
procedure, we did not report analyses of this type. However, a
recently completed simulation study (Kuo 2001) suggests that,
at least for simple random samples, the two-stage procedure
for logistic covariate models performs quite well in estimat-
ing the parameters for the covariate function for cases with
well-defined latent structures (i.e., cases where the conditional
probabilities for the two classes are distinctly different). The
vegetable data seem to satisfy this requirement.

From a theoretical perspective, the best strategy would be
to use the outside variables as covariates directly within the
latent class model (Dayton and Macready 1988). In brief, for
a two-class model, the latent class proportion for class 1, say,
is modeled by a function of the form

771)?2 =g(Z,B),

where Z is in general a vector-valued covariate, 3 is a vector
of parameters, and g(-) is a monotone function with a 0, 1
range over the domain of Z. For example, a logistic covariate
model with J covariates could be defined as

mily = 1/[1+e P mmbidi],

-where 77';}'7 is the proportion of cases in the first latent class

(X) conditional on the covariate vector, Z.

Conditional probabilities for the manifest variables and the
parameters of the covariate function are estimated simultane-
ously. Programs such as Latent Gold (Vermunt and Magidson
2000) and LEM (Vermunt 1997) provide estimates for logis-
tic covariate models with case weights but do not take into
account clustering. In the context of a complex survey design.
one is faced with assessing the contribution of a covariate. Tbe
jackknife is recommended as an easily applicable and valu:i
method for generating standard errors of the regression coef-
ficients of the covariates for complex samples.
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2.2 Goodness of Fit

Model! fit is mentioned in several of the discussions. As
we state in our article, we are unaware of any good measure
of fit that is appropriate for LCA of complex sample survey
data. We also note that for data from a simple random sample,
the likelihood ratio statistic cannot be used for comparison
of models with differing numbers of classes. Vermunt fits a
weighted model based on a Poisson sampling model and con-
cludes that a two-class model “does not fit the data.” Although
his analysis takes into account sampling weights, it ignores

the role of stratification and clustering of the sample selec- -

tion in survey design. Our analysis, based on a Wald test that
100k into account both stratification and clustering, suggested
satisfactory fit for a two-class model.

3. ACCOUNTING FOR THE SAMPLE DESIGN
3.1 Sample Weights

~ The CSFIl has a complex sample design involving stratified
multistage cluster sampling with sample weighting for non-
response and postratification adjustment. Vermunt argues that
weighting should be used for estimation of the LC proportions
but not for estimation of the item-conditional probabilities. He
prefers a two-stage approach, in which the unweighted data
are used to estimate the conditional probabilities and these are
then held constant during a weighted analysis that estimates
the LC proportions. He argues that if the sample weights are
informative for estimating the items conditional probabilities,
then these probabilities are not homogenous across subgroups
of the population, and the LC model is misspecified for the
population. We address these issues in Section 6 of our arti-
cle and also address the bias and efficiency trade-off between
weighted and unweighted analyses. Vermunt also proposes
using a method described by Clogg and Eliason (1987): how-
ever, this method does not adjust for clustering in the data
and also assumes that the model is correctly specified. It is
important to note that in general, it is not possible to know
whether a model is “correctly” specified, and even if this were
possible, the “correct” model would likely be unduly com-
plex and difficult to interpret. When the posited LC model
is misspecified, Vermunt's two-stage approach does not esti-
mate the “census” model, that is, the model that would have
been obtained if the entire population had been sampled. In
contrast, the weighted pseudolikelihood approach that we use
does estimate the census model. This approach has the advan-
tage that if the model is misspecified, estimates from different
probability sample designs on average will be approximately
the same. Vermunt’s suggestion of dealing with heterogene-
ity of the item-conditional probabilities by identifying homo-
geneous groups and then using multiple-group LC analysis
seems impractical and difficult to carry out.

As shown in Figure 1, the impact of weighting is to lower
the magnitude of the conditional probabilities, although the
effect is much greater in the low-consumption class than in
the high-consumption class.

Elliott and Samme] report a more elaborate analysis based
on stratification of the sample by the magnitude of the weights
them§(?1ves. This appears to show that the estimated item-

 conditional probabilities differ between the low weight stratum
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Figure 1. Impact of Sampling Weights on Conditional Probabilities.
and the medium and high weight strata. They did not test

whether these differences are statistically significant. Based
on our null results for a Wald test comparing weighted to

unweighted estimates, we doubt that theirs would be statisti- -
cally significant. As pointed out in our article, the Wald test
for informativeness of the weights has low power. Based on :
our results and those of Elliott and Sammel. we are inclined |
to believe that the weighted estimate is the more reasonable |

estimate for the population.

Elliott and Sammel also propose an interesting alternative
to the “all-or-nothing” approach to weighting. They divide

the data into design strata and use an estimator that is
a combination of weighted and unweighted estimates. The

weighted estimate has more influence on the overall estimates

if there is evidence of substantial variability across the strata

in the parameter of interest and the unweighted estimate has .

less influence if there is little evidence of variability. Because
this approach requires a prior distribution over the strata-
specific parameters, its robustness to the distribution of the
assumed prior should be investigated before using it. Elliott
and Sammel also propose an extension to this model, a hier-
archical model that requires both hyperpriors and priors. Such
a model would require substantial robustness testing.

3.2 Variance Estimation

Vermunt recommends using linearization variance estima-
tion rather than the jackknife variance estimation that we used.
We agree that linearization variances will be faster to compute
and can be programmed for various LCAs. We chose to use a
Jackknife method because of its ease of use: that is, it does not
requiring extensive programming. In addition, jackknife vari-
ance estimation, through the use of jackknife replicate weights
(Rust and Rao 1996), is more flexible than linearization in
that it is able to account for variation inherent in commonly
used adjustments to the sample weights, such as nonresponse
adjustments and postratification. Similar types of replicate
weights can be formed from other variance replication meth-
ods, such as balanced half-sample replication. National sur-
veys such as the third National Health and Nutrition Survey
(Ezzati, Massey, Waksberg, Chu, and Maurer 1995) are now

routinely providing replicate weights for variance estimation.
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4. ALTERNATIVE APPLICATIONS

Seastrom suggests other applications of our LC model.
Especially usetul is her idea of modeling LCs that refiect level
of risk for an adverse health. behavioral, or social outcome. It
is reasonable to hypothesize that a population may have risk
patterns that can be classified into discrete unobservable cate-
gories. Also, by identifying these LCs and their relative sizes
in the population, intervention programs can be constructed
that could be directed at the highest risk classes of nontrivial
size. Because complex surveys are used extensively in behav-
ioral and social research. our results for using design-based
analyses are potentially of great value for carrying out such
analyses with survey data.
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